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SUMMARY 

The problem trtftted h«r* deal» with the "di bugging" of a ntw 

complex syttem during  the  Inttul  periuJ o(   It»   tolftl   life.    During 

this peiiod  failures and errors are corrected aa tht-y occur, with rc- 

aulting improvement   in aubsequcnt  performance of  the »ystem.    One 

■athetaat ical  idealir^it ion of toil process   leads  to the «ssomption that 

•ysttn failure rate  la decreasing with lime.    In practice, the de- 

bugging phase  is considered completed when the   fallun   rate  reaclu-tt 

an equilibrium or constant   value.    HoJeU are  formulated  far this 

phenownODi     Haximon  llketih    d rstlnatei are obtained  for  relevant 

failure  rate  functions and  f-"  the end of  the debugging period.    A 

conservative upper confidence bound on the stable  failure rate  is 

obtained. 

The problem is   treated  from a  point  of  view which  lie» between 

a completely nonparanvtric approach  in which no   information  is acbumed 

available concerning the   form of  the diM r ihut ion, and a parametric- 

outlook in which the   form of  the distribution   is assumed known but  a 

finite number of parameters need to be eatlnated. 

I 
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1.     INTRODUCTION 

It   l». common practice after  n>aianiiij- a new complex ayitem auch 

aa  that   Involving a ccmpiitcr, airplane, etc., to "debuB"  It during il <• 

initial  portion of its  total   life.    During thia debugging period, 

1*1 h.ii f.  and errors '•!«   corrected aa they occur, with resulting lm< 

provement   in aubaequent  ayatem performance.    One mathenuit leal   Ideali- 

sation of   this  t'rocc>s   l^Ads to  the asaumpt ion tluit  system failure 

rate  Is deert-asirg with time.     In practice, the debugging phase is 

cont iclfrcd completed when the   failure  rate reaches an equl 1 ibrlun or 

constant   v.il« .    An  im|>ar(ant   problem  is to determine when the constant 

failure   rait- condition has been achieved and  to estimate the constant 

failure   rate. 

Another problem related to the debugging problem in many respects 

is  the  "burn-in" probten considered by Barlow, Hadansky, Proschan and 

Schcu«-r  (196;*).    Hie object  of "burn-in"  1*  to eliminate  poor quality 

I tens   in some  population.    However,  In the "burn-in"  problem con- 

sidereii  there,   itens  tail at must once and no repair occurs.     Lewis 

(196'.)  developet' a branching Polsson procrsi»   for  the analysis of com- 

puter  failure  pattern*.    Although he considers  computer  failure 

times which ostensibly occur after  the debugging period,  his model 

could be  used  for the debugging period as well.     However, he makes 

more assumptions  than we do   In a  highly structured mathemfltical model. 

We  obtain maximum  likelihood  est imaturs   (MI.K'r,)   for  the   failure 

rate  function and conservative  confidence bounds on  the  failure  rate at a 

specified  time.    This  is done without  the customary assumptions con- 

cerning the  form of  the  liie distribution.    The approach  Is   intermediate 

between a  completely nonparametric  point of  view (in which no  infor- 

mation   is assumed available concerning the  form of   the distribution) 

and a  parametric outlook (in which the  form of  the distribution  is 

assumed known,  but a  finite number of parameters are to be estimated). 

Next we find methods which allow us to claim with specified  (high) 

assurance that the "stable"  failure rate of a system which is being 

debugged during dcvclopncnt  and  initial use Is no greater than a certain 

value. 
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Clearly, without a kaowlfdgc of Hi- form of the dl'itrlbui Ion of 

a relevant itatlbtlc, wc cannot hope tu obtain exact confldcMice bound». 

However, we do obtain conacrvtlvo confidence boundn. That la, our 

•■■urance 1« «t leant (Inntead of exnctl^c^ual to) a »peclfled value 

Chat the reliability, failure rate, etc., fall» In tone confidence act 

determined from the ohnervatIon«. Of cou.ne, the price we pay 1« that 

Che confidence net* tend to be larger than in the i .i • In which the 

failure dintrlbution is amiuncd to belong to a particular fnmlly of 

dlatrlbution«. However, wo »hall show that the conservative confidence 

bounds obtained have Che property that for a member of the class of 

distributions under consideration the confidence bounds arc exact, 

not merely conservative 

2. DEBUCC1WC MODELS 

SuppuHs X., the time to the first failure, has dlr-tributIon F(t) 

with failure rate r(t) which Is nonlncrcasing for t > 0. After each 

failure, repair Is performed In a negligible length of time so that 

Che system operates again.  Asnune further that the system failure rate 

is restored to the value It had Junt prior to the failure.  Specifically, 

assume that X., the time between the (l-l)st failure and the 1-th fail- 

ure ha» distribution 

P (x) for x > 0 
1 'F<W 

(where S1 • Xj + ... + Xj and F(x) - l-K(x)),  the conditional distri- 

bution of a system of age S. -. 

Civen observations X., X-, ..., X , we wlr.h to estimate r(t) for 

0 < t < S .  More generally, we may have k copies of 

the system, each copy independently operating as before. Obr.ervatlons 

X.., i ■ 1, 2, ..., k; J ■ 1, ..., n. are obtained.  The distribution 

of X  is 

F(S    + x) - F(S    ) 
FY  (x) -^J -1 i-J_i_ 
XiJ HS^) 



the conditional distribution of ait  item of ay.v J>     .   j  ■ X j  + X^ +•••+ X^   .   j. 

A^ain wc wleh to estimate  r(»)  during the obbcrvatIon period. 

If the  failure  rfltc flrut  decrfaece and then becomes coiuitant 

for  t > t   , wr i.iy wluh to estimatf t    and  r(t   ).     It   1« of  Intcrctit 
o ' o o' 

to note  the common-scniir  procedure often used   In  this  bltuutinr.  to 

estimate  t    and   r(t   ).    A  graph   is drawn  in which the comulative num- 
o o' n    ' 

ber of   failures   1» plotu-d against  clapbed O|H rnt lonnl   time an  in 

Fig.   I.     (See Keener (1961)).     Debugging is terminated approxlnuitely 

at   thai   |>olnt   In   time  when the  nlopcB 

h  -  (b -   I)  .!_ 
Sh ■ Sb.l \ 

of Successive secAnts  (dhown by dnshed  lines) appenr   to have  reached 

an equilibrium value.    Th?»c slopes  represent   fnlhire  rnles over 

successive time  periods.     System  improvement   corres|ioiu!s  to the situ- 

ation  In which  the slopes, 7—, arc decreasing with h.     However, due 
xh 

to statisticnl   fluctuations, some  reversals will occur.     The comnun- 

sense graphical procedure described above furnishes no precise way of 

taking into account these reversals. Our technique, based on maximum 

likelihood,  provides   for this. 

In many practical  situations   It   is not  realistic   to  insist on 

determining the  point   t     beyond which failure  rate  is  constant.    Rather, 

for pragmatic  purposes   It   suffices   to  find   the  point   t.,   such that 

r(t.)   -   lim r(t)   ■ c     for some  specified  c > 0.     Thus,  we wish to   find 

the  point  beyond which  further  reliability  Improvement  can decrease 

the   failure rate by only e.     We wish to obtain maximum  likelihood es- 

timates  of  t.  and a  conservative  upper bound on  r(t.). 

3.     MAXIMUM LIKKl.IilOOl) ESTIMATES   FOR DFKUCGING MODKLS 

We  begin by giving  the KLE,  r  (t),   for a  decreasing  failure  rate 

function based on a sample of size n:    X,, X„,   .,.,  X     from one copy 
i      I n 

of   the  system.     The derivation of   the MLK   is   very similar  to  that   given 

for a  decreasing   failure   rate   function based  on n   Independent  observa- 

tions   from a DFR distribution  (Marshall and proschan   (1965))  and   Is 

therefore omitted.     (See also   Brunk (1963)   for  related  estimates.) 

. 

K 
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Recall the notation B. ■ X. + X- + ... + Xj with the convention 

that S0 ■ 0. The MLK r (t) Iß constant on the Intervals (S., 2 .J 

for 1 - 0,..., n-1. "he MLE for r(t) on (S^ S1+1) IB XJ+1 before 

luV.iuy.  account of the fact that the distribution 1H DFK.  If It turns 

out that x" > X« > ... > x' , then we conclude that f (t) - X' 1    -    2    - -    n ' n i+1 
for S.   < t  < S.   .,   1   »0,  1 n-1.     If a reversal occurs, say 
-1 -1 " Xj.i   <  X..«,   then we   nuat  average to obtain a ronnon e>.:lmate of 

1 i  2       11 l-l failure rate,  |-?   (X     .  ••  X    Jj      ,  for S.   < t  < S.+2.    Next we ex- 

•ni^ \i ^»n (xiH+wi"1' (i (vi+xi+2>}"1' 
X..,,..., X  to sec If these estimates of the failure rate on the 
1+3      n 

succrssivo Intervals ire decreasing.  If so, they constitute the MLE's 

of the failure rates m the successive Intervals.  If not, we continue 

to average until no reversals remain.  At the end of this process, we 

obtain MLK's r^ > r^,^ > ... > r^^ satisfying: 

r.   - l-1 (X, + ... + X ))  , 
l.nx  jnj  1        n^j 

-1 

■1 
2 

and 

'n.+l.n- • I  (X Al + ... + X )[  , 
1  '2  In2 " ni  ni+1        n 

r xi  "  lr-^7 (X  .. + ...+ X )|  , n.+l,n  In - n  n.+l        n'j 
r 

r,      for 0 < t < S 
l.nj -  - n^ 

r 
r (t) - J ni+1.no for S < t < S (3.1) 
n    <  ■'■   '     ni    ~  2 

r  .,    for S  < t < S 
n,+l,n      n,     - i 
k k 



n 

No estimate  of  r(t)   Is nujJe  for t > S    since no dal« arc available  for 

that time  Interval. 

Example   I.     In Fig.   1  the  cumulative number of  failures versus 

times of'failure.  Is graplicd  for  the  following data 

Tine  of 
Fa I lure 

S. ■ 25 hours 

S» ■  75 hours 

S. ■  125 hours 

S.  ■ 165 hours 

S- ■ 2A0 hours 

S. " 310 hours 
o 

S_ ,l!! A10 hours 

Time Bot vorn 
Successive Failures 

X ■ 25 hours 

X ■ 50 hours 

X- ■ 50 hours 

X, = A0 hours 

X,. = 75 hours 

X, = 70 hours 
6 

X «=   100 liours 

We arc assuming that r(t)   Is decreasing In t.     If there were no 

reversals  in the observed  failure  rates on successive intervals,  the 

estimate of  r(t) would be 

?(t) e v si.i<täSi' * 1.  ....  7; 

i.e., 

JL. JL. i_. JL. J^. J_. 1_ 
25'   50'   50'   A0'   75'   70'   100  ' 

However, since -r^ < TTT and •== <  -TTT, we have two reversals. 
50  A0    75  /0' 

By combining the second, third,and fourth estimates (adding 

numerators of the three estimates to obtain a new numerator, and 

adding denominators to obtain a new denominator), we obtain as our new, 

tentative estimate of r(t): 

25 ' 140' 140' 140' 75' 70' 100 
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The reversal yr- < yx- Is left.  Combining these as before, we 

obtain finally as the MLE of r at the observations: 

I H25)  = 25 1 
r(75) = r(125) - r(165) = ~ 

r(2A0) = r(310) «= j~ 

[ ;(410>c rJo • I 
Between successive observations, r is, of course, constant. Using 

this "smoothed" data, we obtain a new graph in Fig. 2, in which the 

slopes (failure rates) of Fig. 1 are smoothed. 

■ 

MLE for a Decreasing Failure Rate from k Copies of the System 

Using the same techniques as in the case of a single copy of the 

system, treated above, we may obtain the MLE of the failure rate, assumed 

decreasing., Again the derivation of the MLE is similar to that given in 

Marshall and Proschan (1965) and is omitted. 

First the actual failure times (not intervals between failures) 

for all k systems are pooled and ordered.  Call these ordered obser- 
k 

vations T, < T_ < ... < T , where n = S n.. Between successive T. , 
i. -    d, - - n ^=2 1 l 

the failure rate estimate is constant as above. Our Initial estimate 

of the failure rate in an interval, before imposing the constraint that the 

failure rate be decreasing, is computed as the reciprocal of the total 

test time observed in that interval. Thus, on [0, T.], the initial es- 
-1 -1 

tlmate is  (n T.)     ,  on  (T^, T2],   the initial estimate is {N-d.-T.)}     , 

on  (T2,T3],   the  initial estimate is  {^(T--!«)}"  ,   ...,  on    (T    -,  T  ], 

the initial estimate is  (T    - T    ,)      where N.   is the number of systems 
n   n-i        l 

simultaneously in operation during (T. , T. . ]. On (T ,«°), no estimate 

of failure rate is made since no failures are observed. 

The initial estimates are then compared; if they are in decreasing 

order, they constitute a MLE of r(t) on {0, T ]. If a reversal occurs, 

we average as above to eliminate it.  For example, if N .(T - T .) > 

N.(T   - T ), the revised estimate of the failure rate on (T. ,, T. .] 

f] 1 1 
lsl2 ^i-l^i^i-P + MTi+rTi^i  '  We continuC! averaging in this 

i 
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fashlon until all reversals are eliminated. The resulting estlnmte is 

the MLE of r(t) on [0, T ] under the assumption that r(t) is a de- 

creasing function. 

Strong Consistency of the MLE 

In this subsection we show that the MLE for the decreasing failure 

rate obtained above from k copies of the system is consistent. We 

assume that at least t hours of operation are observed for each of k 

systems. We shall show that as k ->■ o», f. (t) -> r(t) with probability one, 

Let n, (t) be the number of failures of the i-th system and 1 k 
n ■ n(t) = £• n (t) be the total number of failures over all k copies 

in [0, t]. isl 

Then .       ,    . 
irr(x) dxy      -Jl  r(x) dx 

Pln^t) = j] --^-jj e Jo 

{n.(t), t > 0} is a non-homogenous Poisson process with intensity 

function r(t), and En, (t) = / r(x) dx. 

Lemma 3.1. Suppose k systems operate between observed failure 

times T. , and T.. Then Z s k / i  r(u) du, i = l,2,...,n, are 

Independently and identically distributed with exponential distribution 

P[Zi < z] = l-e"
Z. 

For a proof see Barlow and Proschan (1969). || 
t-s 

Let T^ < t < T... and r (t ) = sup   inf -—r 
1 - 0   1+1    k 0   t>i+l s<l  'I1 I    k(T  -T ) 

j=s   J   J 

Theorem 3.2. Let r(x) be nonincreaslng in x > 0 and each of k 

systems be observed for at least t hours of operation.  Then 

r(t~) > lim sup r. (t ) > lira inf r. (t ) > r(t ) N 0 - ,       k 0 - .      k 0    x o 

with probability one. 

Proof.  Since the proof is essentially the same as in Marshall an 

Proschan (1965) (abbreviated MP(1965)), we merely indicate the necessary 
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changes In certain details.  To make the Identifications easier, wo 

assume that r(x) is nondecrcaslng rather than nonlncreasine as in the 

hypothesis above. This merely affects the ordering of the Inequalities 

and the order in which we maximize and minimize. 

The X. in MP(1965) become T. in our model, "hile the number, n-i, 

of items on test between X and X, ... becomes the number k of items on 

test between T. and T. ..  Let a.(n) + 1 be the index of the largest 

T. observation < t., j=0,l, as in MP(1965).  Then 

k/ 
li+l r(u). 

r.  ^i* 
du 

are independent, identically distributed random variables with mean 

■ ; ».  As in MP(1965), we wish to show that P(lim sup B ] - 0, where 

B = 
n 

-1 m 
Inax      I m   E f7 _  I    \ I > 

i1(n)-ao(n)<m<a1(n)     1=1 ^1  r(t1)
;| - 

The main change in the proof occurs with respect to our definition 

of A .  Their set A becomes n n 

A = [|ai(n) - k /  r(x) dx|< k 6, 1=0,1], 

t1 
where 6 satisfies 0 < 26 < /  r(x) dx.  Since 

a (n)  n.(t.)+...+ n,(t.)  a.s t. 
i     ii      ki     ri/\j 
-k k  "  Jo r(x) dx 

c by the strong law of large numbers for 1=0,1, we have P[llm sup A ] ■ 0, 
and the remainder of the proof is Identical with that of MP(1965). 
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Exnir.file 2: The method for ohtalnlnß tlio MLE of r(t) In the  Bystt-m 

dohucßlnß modol Is i lluntrated for two copies of the sani' ay.tcm. 

Suppose System 1 fails at times 

S  ■ 25 hrs., S12 - 125, Sl3 - 240, 

and that System 2 falls at times 

S21 - 75, S22 " 165, S23 " 310, S24 " A10, 

If the  failure times are pooled and a^e denoted by T.,  T.,...,  as before, 

then our estlii.ite of r(t),  assuming no reversal, would be 

I.e., 
1 

r(t) 

1 

2(Ti - Vi*for Tl-1' ' -<Ti, 1-< 5 

=r =,-— for T. . < t < T., 
I 'i " 'i-l     X"1    " 1 

1 > 5; 

1  1  1 1   1   j  1   1 Since m < -8-0 and y^ < ^, 50' 100* 100' 80' 150' 70' 100 

we have two reversals.  By combining the second, third, and fourth 

estimates as before, we obtain 

50' 280' 150' 70' 100* 

By combining the estimates y^r and yr, which represent a reversal, we 

obtain 

1 1 
50' 280' 220' 100* 

2 1 
The reversal yrr < -r-— is still  left.    Combining as before, we 

finally obtain . 

r(t) 

YQ for 0 < t < 25 

280 for 25 < t < 165 

•~~ for 165 <  t < 410. 
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ULK for tin- Time IVbn^.l nc Kndi 

To rstlronte the end of the dchußglng period, we first compute the 

KLE for the failure rate as above. Now suppose r(t) Is ducreanlng 

for 0 ^ t 5 t and constnnt for » ^ t . Tl«e MLC for the end point of 
o o r 

the dcbuKglng period is the beginning of the last avcrnglng interval. 

Tills is a consequence of the invarlance property of tho  ML:; i.e., 

the MLK of a function u(r(t)) of the failure rate is the same function 

u(r(t)) of the failure rate M».E. In the notation of (3.1), to - Sn . 

The MLE for r(t ) Is the value of r(t) in the last interval, that 
o 

is r(t ) - r„ .,  .  It turno out that In this case the MLE of t  is 
o   n^+l.n o 

a poor one (I.e., Is not oven consistent) since, as the number of ob- 

servations increases to Infinity, t converges almost surely to Infinity, 

as may be shown by using the result of Andt-rsen (195A) , p. 218, top. 

Now suppose that we wish to estimate t., the left-most po*nt beyond 

which the failure rate does not decrease by more than c.  Specifically, 

:1 
t,  -  lnf{t:  r(t)  -  11m r(t)   <  e).     Denote by k    the smallest  index k 

such  that  r(Sk)  - f(S )   < c     Then the MLE for  tj  is  tj - S^.    Again we 

are  using the  invarlance property of  the MLE described above. 

Since r(t)  is a consistent estimator of r(t),   it  follows  readily 

that   t.  is a consistent estimator of t-,  assuming r(t)  is strictly de- 

creasing in any interval containing *., . 

4.     CONSERVATIVE CONFIDENCK BOUNDS 

In this  sectior methods  are  presented which allow us  to  claim with 

specified (high)  assurance  thai  the "stable"   failure   rate of a system 

which   Is being debugged  during development and   initial  jse  Is  no  greater 

than a certain value. 

The basic  Idea  in obtaining the conservative confidence bound on 

r   ,   the stable  failure  rate, may be stated  Intuitively as  follows.    The 

observation,  X  ,   Is a   random variable  from a  distribution whose   failure 

rate  at each point of  time   Is at   least as  great as   r  ,   1  ■ l,...,n. 

Therefore,  if one uses  observations X.,  X«,   ...,  X    to estimate a single 

failure rate   (pretending  that all the X.   are  from a common exponential 

distribution),  the estimate will  tend  to be higher  than r  .     Similarly, 

an upper confidence bound   for this common failure  rate,  calculated  from 
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the observations X.,  X,,   ...,   X    as though they were a sample from a 
i      i n 

■Ingle exponential distribution, will constitute a conservative upper 

confidence bound for r .    Uc make these Ideas precise now. o 
Lemma A.l.    Let X.  have distribution F(x), X« have conditional 

distribution 
F^+x) - FCXj) 

FCXj) 
•   • • • • 

X.  have conditional distribution 

•   • • • • 

where F has failure rate r(t)   > r    for all t > 0.     Let Y,, Y«,   ... ,Y -    o - 1     ^ n 
be independent observations  from the exponential distribution with 

n * n failure rate r .    Then r ,  X.     is stochastically smaller    than  E ,  Y.. o^ll ' 11 
Proof.    First assume that  F is continuous.     Let  the random var- 

iables X., X. + X«,   ...,   E ,  X.  be simultaneously transformed into ran- 

dom variables Y|, Y| + Y',   ...,   E i Y! under the transformation 

(A.l)      YJ + ... + Y'  - - ^- log Fttj + ...  + X1),    i - 1,..., n. 
o 

Then for 1 • 1,   ..., n, 

PlYj  > u) - P[- ~- log F(X    + ... + X ) + ~- log F(X    + ... + X1-1)  > ul 
0 " 0 

log - 
F(X1+...+X1) 

F(X1+...+X1_1) 
< - r u o 

F(X +...+X ) 

FCXj+^.+X,  j^) 

since the random variable 

r J- 
-r u o 

F(X1+...+Xi) 

F(X1+...+X1  ,) 

The random variable U is said to be stochastically smaller than 
the random variable V if P(U > t) < P(V > t) for each real value t. 

I 
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Mb 

is uniformly distributed on  [O.l].      Thus,   the Y.',   .... Y'  arc 
1 n 

Independently distributed aecordinß to 

-r x 
Gr (x)  - 1 -  c    0   , 

o 

the exponential  distribution with  failure  rate  r 
1 - 0 

Next observe  that  if y ■ - — log F(x) ,   then 
o 

$[ --^ r- 1 for all x ? 0. 
o 

Thus, under the transformation (A.l) 

Y;  + ... + Y' i X. + ... + X . 
1        n   1        n 

*y.- 
It follows from Lehmann (1959), Lemma 1, p. 73, that T,. Y is 

stochastically larger than Z.X,. 

If F is not continuous, the same result may be obtained by 

limiting arguments.|| 

We now apply Lemma 4.1 to obtain a conservative confidence 

bound on r from observations X., ..., X . 
o In 

Since Y, Y are exponential with failure rate r , 
In o 

X,  (2n)/2E.Y. is an upper lOO(l-Qr) percent confidence bound on 

2 
r  , where x».   (2n)   is   the  lOO(l-Qf)   percentilo of the chi-squarc 

distribution with 2n decrees of freedom.    Hence 

If a  random variable T has survival  probability function H, a 
continuous   function,   then the random variable il(T)   is uniformly dis- 
tributed on  [0,11;  FCSi.i + x)/i'(,Si_l)   is   the conditional survival 
probability function of X^ given S,   ,, 

This Lemma  states:    "Let F    and F.   be  two cumulative distri- 
bution  functions  on   the  real  line.    Then FjCx) S F0(x)   for all x If 
and only  If  there  exist   two nondecreaslng   functions   f    and  f,,  and 
a  random variable  V,  such  that  (a)   f0(v)  5  fi(v)   for all  v,  and   (b) 
the distributions  of   f0(V)  and   fjCV)  arc  F     and F.   respectively."     In 
our case  take 

fo(v)   - v,   f^v)   - - i- log F(v) , Fo  - F, Fj - Gr  . 
o *' A o 



I 

l-c - Plro < XJ_a(2n)/2J:J Yj < Plro < Xi_a(2n)/2zJ XJ. 

Thus x, (2n)/2T..  X^ Is a conservative lOO(l-o) percent upper confi- 

dence bound on r • Note that if F is the exponcntinl distribution, 

the confidence bound is exact. 

Examples 

(i) In Example 1, n » 7 and EX. - 410.  Choosing a ■ .05, we 
2 

find from chi-square tables that x oc:(^) " 23.7. Thus, a 

conservative 95 percent upper confidence bound on r is 

23.7/820 - .0289. That is, P[r < .0289] > .95. 

(11) The data in Example 2 come from two copies of the system. 

The procedure for more than one copy of the system is essen- 

tially the same as that for one copy of the system, viz. a 

conservative 100(l-a) percent upper confidence bound on r 

2       k ni k 
is Xi  (2n)/25;. Z.    X... where n » Z. n. , k is the number of 

l-a      J. J.  ij' 11 

copies, and n. is the number of observations on the i-th copy. 

For the data in Example 2, k"2, n. «3, n-^A (so that 

n ■ 7), and ZT.  X,, ■ 650. Choosing a ■ .05, a conservative 

95 percent upper confidence bound on r is 23.7/1300 ■ .018. 

That is, P[r < .018] > .95. 
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